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Abstract: In 2013, the STRaND (University of Surrey and Surrey Satellite Technology Ltd) and the PhoneSat
(NASA) programs attracted the attention of the aerospace community applying commercial off-the-shelf smart-
phones in CubeSats. Both programs deployed CubeSats using smartphones based on Google's Android, in which
application development is mainly based on Java programming language. Some of these CubeSats had actuators,
e.g., STRaND-1 had three reaction wheels mounted in an orthogonal configuration to provide three-axis control,
whereas PhoneSat 2.0 beta had magnetorquers to de-tumble the spacecraft. Taking into account a CubeSat that
runs Android operating system (based on a smartphone), it is natural to evaluate the attitude and orbit control
subsystem (AOCS) based on Java. Elsewhere, we shown State-Dependent Riccati Equation (SDRE) is a feasi-
ble non-linear control technique that can be applied in such CubeSats using Java. Moreover, we shown, through
simulation using a Monte Carlo perturbation model, SDRE provides better performance than the PID controller,
a linear control technique. In this paper, we tackle the next fundamental problem: stability. We evaluate stability
from two perspectives: (1) parametric uncertainty of the inertia tensor and (2) a Monte Carlo perturbation model
based on a uniform attitude probability distribution. Through the combination of these two perspectives, we grasp
the stability properties of SDRE in a broader sense. In order to handle the uncertainty appropriately, we combine
SDRE with H∞. The Nanosatellite Constellation for Environmental Data Collection (CONASAT), a CubeSat
from the Brazilian National Institute for Space Research (INPE), provided the nominal parameters for the simu-
lations. The initial results of the simulations shown that the SDRE controller is stable to± 20% uncertainty in the
inertia tensor for attitudes uniformly distributed and angular velocity up to 0.15 radians/second.
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1 Introduction

In 2013, the STRaND (University of Surrey and Sur-
rey Satellite Technology Ltd) [1] and the Phone-
Sat (NASA) [2] programs attracted the attention
of the aerospace community applying commercial
off-the-shelf smartphones in CubeSats. Both pro-
grams deployed CubeSats using smartphones based
on Google's Android, in which application develop-
ment is mainly based on Java programming language.
Some of these CubeSats had actuators, e.g., STRaND-
1 had three reaction wheels mounted in an orthogonal
configuration to provide three-axis control, whereas
PhoneSat 2.0 beta had magnetorquers to de-tumble
the spacecraft. Taking into account a CubeSat that

runs Android operating system (based on a smart-
phone), it is natural to evaluate the attitude and orbit
control subsystem (AOCS) based on Java.

Furthermore, the design of a satellite attitude and
orbit control subsystem (AOCS) that involves plant
uncertainties, large angle maneuvers, and fast attitude
control following a stringent pointing, requires non-
linear control methods in order to satisfy performance
and robustness requirements.

Elsewhere, we shown State-Dependent Riccati
Equation (SDRE) is a feasible non-linear control tech-
nique that can be applied in such CubeSats using
Java [3]. Moreover, we shown, through simulation
using a Monte Carlo perturbation model, SDRE pro-
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vides better performance than the PID controller, a
linear control technique.

In this paper, we tackle the next fundamental prob-
lem: stability. We evaluate stability from two per-
spectives: (1) parametric uncertainty of the inertia
tensor and (2) a Monte Carlo perturbation model
based on a uniform attitude probability distribution.
Through the combination of these two perspectives,
we grasp the stability properties of SDRE in a broader
sense. In order to handle the uncertainty appropri-
ately, we combine SDRE with H∞.

SDRE was originally proposed by [4] and then
explored in detail by [5]. A good survey of the
SDRE method can be found in [6] and its system-
atic application to deal with a nonlinear plant in [7].
The SDRE method was applied by [8, 9, 10, 3, 11]
for controlling a nonlinear system similar to the six-
degree of freedom satellite model considered in this
paper. [8] defined a simulator using Euler angles
based on commercial software, whereas, [9] applied
quaternions on commercial software. [11] applied the
SDRE as a filter technique together with a PID con-
troller. [10, 3] shown, through simulation applying
opensource software, using a Monte Carlo perturba-
tion model, SDRE based on quaternions provides bet-
ter performance than the PID controller.

SDRE method can be readily extended to nonlin-
ear H∞ [5]. The interest in H∞ optimization for ro-
bust control of linear plants is mostly attributed to the
influential work of [12], in which the problem of sen-
sitivity reduction by feedback is formulated as an op-
timization problem. This problem can be numerically
solved with the help of the well-known approaches
based on Riccati equations or Linear Matrix Inequal-
ities (LMIs) [13]. Later, [14] addressed the problem
of robustly stabilizing a family of linear systems in
the case where such family was characterized byH∞
bounded perturbations of a normalized left coprime
factorization of a nominal system.

Nano satellite constellation for environmental
data collection (CONASAT) [11], a CubeSat from
the Brazilian National Institute for Space Research
(INPE), provided the nominal parameters for the sim-
ulations. The initial results of the simulations shown
that the SDRE with H∞ controller is stable to +-
10% uncertainty in the inertia tensor for attitudes uni-
formly distributed and angular velocity up to 0.05 ra-
dians/second.

This paper is organized as follows. In Section 2,
the problem description is presented. In Section 3, for
the sake of completeness, the satellite physical model-
ing in the simulator is briefly reviewed. In Section 4,
we explore the state-space models and the controllers.
In Section 5, we share simulation results. Finally, the
conclusions are shared in Section 6.

2 Problem Description
The SDRE technique entails factorization (that is,
parametrization) of the nonlinear dynamics into the
state vector and the product of a matrix-valued func-
tion that depends on the state itself. In doing so,
SDRE brings the nonlinear system to a (nonunique)
linear structure having state-dependent coefficient
(SDC) matrices given by Eq. (1).

~̇x = A(~x)~x+B(~x)~u

~y = C(~x)~x (1)

where ~x ∈ Rn is the state vector and ~u ∈ Rm is the
control vector. Notice that the SDC form has the same
structure as a linear system, but with the system ma-
trices, A and B, being functions of the state vector.
The nonuniqueness of the SDC matrices creates ex-
tra degrees of freedom, which can be used to enhance
controller performance, however, it poses challenges
since not all SDC matrices fulfill the SDRE require-
ments, e.g., the pair (A,B) must be pointwise stabiliz-
able.

The system model in Eq. (1) is subject of the cost
functional described in Eq. (2).

J(~x, ~u) =
1

2

∫ ∞

0
(~xTQ(~x)~x+ ~uTR(~x)~u)dt (2)

where Q(~x) ∈ Rn×n and R(~x) ∈ Rm×m are the
state-dependent weighting matrices. In order to en-
sure local stability, Q(~x) is required to be positive
semi-definite for all ~x andR(~x) is required to be pos-
itive for all ~x [15].

The SDRE controller linearizes the plant about
the current operating point and creates constant state-
space matrices so that the LQR method can be used.
This process is repeated in all samplings steps, re-
sulting in a pointwise linear model from a non-linear
model, so that an algebraic Riccati equation (ARE)
is solved and a control law is computed also in each
step. Therefore, according to LQR theory and Eq. (1)
and (2), the state-feedback control law in each sam-
pling step is ~u = −K(~x)~x and the state-dependent
gainK(~x) is obtained by Eq. (3) [7].

K(~x) = R−1(~x)BT (~x)P (~x) (3)

where P (~x) is the unique, symmetric, positive-
definite solution of the algebraic state-dependent Ric-
cati equation (SDRE) given by Eq. (4) [7].

P (~x)A(~x) +AT (~x)P (~x)

−P (~x)B(~x)R−1(~x)BT (~x)P (~x)

+Q(~x) = 0

(4)

Considering that Eq. (4) is solved in each sampling
step, it is reduced to an ARE. Finally, the conditions
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for the application of the SDRE technique in a given
system model are [7]:

1. A(~x) ∈ C1(Rw)

2. B(~x), C(~x), Q(~x), R(~x) ∈ C0(Rw)

3. Q(~x) is positive semi-definite and R(~x) is posi-
tive definite

4. A(~x)x =⇒ A(0)0 = 0, i.e., the origin is an
equilibrium point

5. pair(A,B) is pointwise stabilizable (a sufficient
test for stabilizability is to check the rank of con-
trollability matrix)

6. pair(A,Q
1

2 ) is pointwise detectable (a sufficient
test for detectability is to check the rank of ob-
servability matrix)

2.1 SDRE with H∞
SDRE method can be readily extended to nonlinear
H∞ [5]. See also [5] for stability concerns of such
extension. Consider the general nonlinear dynamics
using SDC as:

ẋ = A(x)x+B1(x)w +B2(x)u

z = C1(x)x+D12(x)u

y = C2(x)x+D21(x)u

(5)

where ~x ∈ Rn is the state vector, ~u ∈ Rm is the con-
trol vector, ~y ∈ Rq is the output vector, ~w ∈ Rm

is the vector of exogenous signals (e.g., disturbances)
and ~z ∈ Rn is the vector of error signal which is to be
minimized in some sense to meet control objectives.
In such a way that the attention is moved to the size of
error signals and away from the size and bandwidth of
selected closed-loop transfer function. Furthermore,
the additional functions are C0(Rw).

Consider such state-space model, Eq. (5), de-
scribed by a transfer function G. Now consider the
stabilization of plant G which has a normalized left
coprime factorization [14, 16]:

G = M−1N (6)

then a perturbed plant model Gp can be written
as [16]:

Gp = (M +∆M )−1(N +∆N ) (7)

where∆M ,∆N are stable unknown transfer functions
which represent the uncertainty in the nominal plant
G.

The objective of robust stabilizationH∞ is to sta-
bilize not only the nominal plant G, but a family of
perturbed plants defined by [14, 16]:

Gp = {(M +∆M )−1(N +∆N ) ::

||[∆M ∆N ]||∞ < ε}
(8)

where ε > 0 is the stability margin, which is a
measure of how close a stable closed-loop system is
to instability. To maximize this stability margin is the
problem ofH∞ robust stabilization of normalized co-
prime factor plant descriptions [14].

For the positive feedback of Fig. 1, the perturbed
plant is robustly stabilizable if and only if the nominal
feedback is stable and [14, 16]

||
[
K
I

]
(I −GK)−1M−1||∞ ≤ ε−1 (9)

The maximum stability margin ε and the cor-
responding lowest achievable value of γ are given
as [14]:

γmin = ε−1
max = (1 + ρ(XZ))

1

2 (10)

where ρ denotes the spectral radius (maximum eigen-
value) and for the initial state-space realization Z and
X are solutions of AREs.

Z and X are the solutions to the AREs [16, 14]:

(A−BS−1DTC)Z + Z(A−BS−1DTC)T

−ZCTR−1CZ +BS−1BT = 0

(A−BS−1DTC)Tx+X(A−BS−1DTC)

−XBS−1BTX + CTR−1C = 0

R = I +DDT

S = I +DTD

(11)

A controller which guarantees that [14, 16]:

||
[
K
I

]
(I −GK)−1M−1||∞ ≤ γ (12)

for a specified γ > γmin, is given by:

KH∞ =

[
A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT

]
F = −S−1(DTC +BTX)

L = (1− γ2)I +XZ

(13)
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Figure 1: H∞ robust stabilization problem with left
coprime factorization [16].

Therefore, regarding the combination of SDRE
and H∞ the procedure to compute the controller
that maximizes the stability margin for the perturbed
plants in each step is:

1. Reconstruct the matrices using the SDC form;

2. Solve the two ARES of Eq. (11) computing X
and Z;

3. Compute γmin using Eq. (10);

4. Define a state-space model (A,B,C,D) using X ,
Z and a γ > γmin by Eq. (13);

5. Solve the third ARE that results from state-
space model described by Eq. (13), which leads
to PKH∞

as the unique, symmetric, positive-
definite solution of such ARE;

6. Compute the controllerK for the original system
usingK(~x) = R−1(~x)B2(~x)PKH∞

(~x).

It is known that if a controller can be found using
that procedure, the exogenous signal will be locally
attenuated by γ [16, 5, 14] in each step.

3 Satellite Physical Modeling
A CubeSat, e.g., STRaND-1 [1] and CONASAT [11],
can be stabilized in three-axes so that the payload can
point to the desired target. Next subsections explore
the kinematics and the rotational dynamics of a Cube-
Sat in analysis.

3.1 Kinematics

Given the ECI reference frame (Fi) and the frame de-
fined in the satellite with origin in its centre of mass
(the body-fixed frame, Fb), then a rotation represented
by an unit quaternionQ = [q1 q2 q3 | q4]T can define
the attitude of the satellite.

Defining the angular velocity ~ω = [ω1 ω2 ω3]
T of

Fb with respect to Fi measured in the Fb, the kinemat-
ics can be described by Eq. (14) [17].

Q̇ =
1

2
Ω(~ω)Q =

1

2
Ξ(Q)~ω

Ω(~ω) ,

 0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 ,

(14)

where the unit quaternionQ satisfies the identity: q21+
q22 + q23 + q24 = 1.

Eq. (14) allows the prediction of the satellite's atti-
tude if it is available the initial attitude and the history

of the change in the angular velocity (Q̇ = F (ω, t)).
Another possible derivation of the Eq. (14) is using

the vector g (Gibbs vector or Rodrigues parameter) as
Q = [gT |q4].

Q̇ = −1

2

[
ω×

ωT

][q1
q2
q3

]
+

1

2
q4

[
13×3

0

]
~ω (15)

where ω× is the cross-product skew-symmetric ma-
trix of ~ω and 1 is the identity matrix. Note the Gibbs
vector is geometrically singular since it is not defined
for 180◦ of rotation [18], nonetheless, the Eq. (15) is
global.

3.2 Rotational Dynamics

In order to know the history of the change in the angu-
lar velocity, it is necessary to understand the history of

the change in the angular acceleration (~̇ω = G(τ, t))
of the satellite. According to the Euler-Newton for-
mulation of the rotational motion, angular accelera-
tion is caused by torques, in other words, the change

in the angular momentum
~̇
h is equal to the net torques

~g applied in the satellite, see Eq. (16) (the present sub-
section is derived based on the centre of mass of the
satellite, for the general case, see [17]).

~̇
h = ~g (16)

The angular momentum is also known as the moment
of momentum since it defines the moment of a given

momentum ~p (~p , m~v) about a given point Pcm. See
Eq. (17), in which r locates a given point p with re-
spect to Pcm.

~h = ~r × ~p (17)

Taking into account the motion of the body-fixed
frame Fb with respect to the ECI Fi and the angular
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velocity ~ω, the derivative of the angular momentum
in Fb is defined by Eq. (18).

~̇
h = ~g − ~ω × ~h (18)

Furthermore,
~̇
h = I.~̇ω and ~h = I.~ω, where I is the

time-invariant inertia tensor. The combination of this
definition and Eq. (18) results in Eq. (19).

I.~̇ω = ~g − ~ω × (I.~ω) (19)

The CubeSats in analysis have a set of 3 reaction
wheels, each one aligned with its principal axes of
inertia, moreover, such type of actuator, momentum
exchange actuators, does not change the angular mo-
mentum of the satellite. Consequently, it is mandatory
to model their influence in the satellite, in particular,
the angular momentum of the satellite is defined by
Eq. (20).

~h = (I −
3∑

n=1

In,sana
T
n )~ω +

3∑
n=1

hw,n ~an (20)

where In,s is the inertia moment of the reaction
wheels in their symmetry axis ~an, hw,n is the angular
momentum of the n reaction wheel about its centre of
mass (hw,n = In,sa

T
nω+In,sωn) andωn is the angular

velocity of the n reaction wheel.
One can define Ib using Eq. (21).

Ib = I −
3∑

n=1

In,sana
T
n (21)

Using Ib, the motion of the satellite is described by
Eq. (22) .

~̇ωb = I−1
b ~gcm − I−1

b ω×Ib~ω

−I−1
b ω×

3∑
n=1

hw,n ~an − I−1
b

3∑
n=1

gn ~an
(22)

where gcm is the net external torque and gn are the

torques generated by the reactions wheels ( ˙hw,n =
gn).

4 Controller Design
In a zero-bias-momentum system, two dynamics
states must be controlled: (1) the attitude (perhaps de-

scribed by unit quaternionsQ) and (2) its stability (Q̇,
in other words, the angular velocity ω of the satellite).

The state and the control vectors, for the control
loop, can be defined by Eq. (23).[

~x1
~x2

]
=

[
Q
~ω

]
[ ~u1] =

[∑3
n=1 gn ~an

]
(23)

The control regulator problem requires that the er-
rors in the attitude and angular velocity must be ob-
tained. The error in the angular velocity is directly ob-
tained from the gyroscope readings, nonetheless, the
error in the attitude must be computed. The applied
approach to computation of the error in the attitude is:
given two versors, namely (a) the actual Sun versor sb
in the satellite frame obtained by the proper transfor-
mation of the Sun versor in the ECI (si); and (b) the
reference versor in the satellite frame; to compute a
rotation (there are many) from the actual Sun versor
to the reference versor. The computed rotation can be
described by an unit quaternion Q.

4.1 Nonlinear Control based on

State-Dependent Riccati Equation

(SDRE) Controller
Assuming that there are no net external torques
(gcm = 0), the rotational dynamics defined in Eq. (22)
can be rearranged as defined by Eq. (24) (applying the
property v×w = −w×v). Eq. (24) is relevant since
it is applied in the state-space formulation using the
state and control vectors in Eq. (23).

~̇ω = (−I−1
b ω×Ib + I−1

b (

3∑
n=1

hw,nan)
×)~ω

−I−1
b

3∑
n=1

gnan

(24)

Taking into account the state and control vectors
defined in Eq. (23), the state-space model can be
defined using Eq. (14) (Ω) and Eq.(24). How-
ever, the SDC matrices do not fulfill the SDRE
requirements, in particular, the pair (A,B) is not
pointwise stabilizable. An alternative option for the
definition of the SDC matrices is to use Eq. (15)
(Gibbs vector or Rodrigues parameter) and Eq.(24),
which leads to Eq. (25). Eq. (25) has been shown
to satisfy SDRE conditions described in Section 2.

[
ẋ1
ẋ2

]
=

−1
2

[
ω×

ωT

]
0

[
1
2q4I3×3

0

]
0 0 −I−1

b ω×Ib + I−1
b (

∑3
n=1 hw,nan)

×

[
x1
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x1
x2

] (25)
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Table 1: Satellite characteristics and references.
Name Value

Satellite Characteristics

inertia tensor (kg.m2) diag(0.0547,
0.0519, 0.0574)

Actuators Characteristics - Reaction Wheels

inertia (kg.m2) 0.00015
max torque (N.m) 0.000625

max ang velocity (RPM ) 750
References for the controller

solar vector body (XYZ) [1 0 0]
T

angular velocity (r/s, XYZ) [0 0 0]
T

4.2 Nonlinear Control based on

State-Dependent Riccati Equation

(SDRE) with H∞ Controller

Although the SDRE with H∞ controller uses the
Eq. (25), it follows the procedure defined in Subsec-
tion 2.1. Such procedure requires the solving of three
AREs in each step, instead of one ARE as usual in the
SDRE controller.

5 Simulation Results
Table 1 shows the satellite characteristics [11] and ref-
erences used in the simulation results.

In order to compare the performance of the con-
trollers, a simulation test was conducted with the
full Monte Carlo perturbation model described as
follows: (1) the initial Euler angles of the non-
linear spacecraft system are randomly selected us-
ing independent uniform distributions (minimum =
−180◦, maximum = 180◦); and (2) the initial
angular velocity errors are randomly selected us-
ing independent uniform distributions (minimum =
−0.15 rad/s, maximum = 0.15 rad/s). More-
over, in order to evaluate the robustness of the con-
troller defined using SDRE with H∞, another Monte
Carlo perturbation model is defined as follows: (1)
each diagonal element of the inertia tensor defined in
Table 1 is changed accordingly a uniform distribution
±20%.

The Monte Carlo model ran 10 times and in
each time one simulation of the two controllers were
executed. Such executions used simulation time
200 seconds, fixed step 0.005 seconds, the data pre-
sented in Table 1 and the following controllers, both
defined by Eq. (25) and (3): (1) SDRE controller
(R = 1 and Q = 1) and (2) SDRE+H∞ controller
(R = 1 and Q = 1).

Figure 2: SDRE Gibbs Controller.

Each graph in Fig. 2 and Fig. 3 shows the respec-
tive collection of quaternion errors and angular ve-
locities computed during simulations for a given con-
troller. The SDRE+H∞ controller, Fig.3, has the best
performance since it uses less time to stabilize the ini-
tial conditions defined by the Monte Carlo perturba-
tion model.

The Monte Carlo model ran 30 times using the
same simulation parameters described above. The
simulation results are shown in Fig. 4. Such results
are in accordance with Section 2.

6 Conclusion
The major contribution of the current paper is the ex-
tension of SDRE with H∞ using exactly three AREs
to find the sub-optimal controller, whereas the liter-
ature suggests the γ-iteration in each step in order to
solve the general H∞ problem [5].

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2021.20.1

Alessandro Gerlinger Romero, 
Luiz Carlos Gadelha De Souza

E-ISSN: 2224-2678 6 Volume 20, 2021



Figure 3: SDRE Gibbs + H∞ Controller. Figure 4: Simulation results for parametric uncer-
tainty of SDRE Gibbs + H∞.
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There are two enhancements planned in the short
term: (1) to run more tries of the Monte Carlo pertur-
bation models; and (2) in a complement of the quali-
tative analysis showed in Fig. 2 and Fig. 3, to compute
the standard deviation of the norm of the vectorial part
of the quaternion error as well as the standard devia-
tion of the norm of the angular velocity since the focus
is on the regulator problem in which such quantities
should converge to zero.
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